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Knjigo B. Casarja Praktikum iz radioterapevtske fizike poleg študentov radiološke tehnolo-
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Ti zapiski so nastali kot pomoč študentom pri izvedbi vaj iz predmetov Zagotavljanje in pre-
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podano informacijo dopolnjujejo na različne načine; pri nekaterih vajah podam nekaj več
teorijskega ozadja, spet drugod – posebej v primerih, ko meritvam sledi še zahtevneǰsa
obdelava meritev – pa podajam podrobneǰsa navodila za obdelavo meritev. Rezultata
namreč pogosto ne preberemo neposredno z instrumenta, ampak iz izmerjenih podatkov
šele izračunamo vrednosti, ki nas zanimajo.

Poglavja ne sledijo povsem poglavjem v zgoraj omenjenem Praktikumu. Razlogov je
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Commons z namenom, da vzpodbudi nastanek še več odprtokodnega gradiva. Vesel bom
popravkov in predlogov za izbolǰsave.

Primož Peterlin, december 2017
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1 Merjenje hitrosti doze fotonskega sevanja

1.1 Absorbirana doza

Absorbirana doza – žargonsko pogosto kar doza – je energija na enoto mase, ki jo ionizi-
rajoče sevanje preda snovi ob prehodu skozi snov:

D =
dE

dm
. (1.1)

Pri tem je dE povprečna energija, ki jo sevanje preda prostorninskemu elementu snovi, dm
pa masa tega prostorninskega elementa.

Enota za absorbirano dozo je 1 Gy (gray), kar je enako 1 J/kg.
Absorbirana energija se prek ionizacije in ekscitacije pretvori v notranjo energijo, kar

privede do tega, da se obsevana snov segreje. Zaradi velike specifične toplote vode pa se
temperatura le neznatno povǐsa, kar lahko ocenimo iz enačbe

Q = mc∆T. (1.2)

Pri tem je Q dovedena toplota, m masa snovi, c specifična toplota (za vodo velja c =
4200 J kg−1K−1. Liter (ali kilogram) vode, ki prejme absorbirano dozo 1 Gy, se torej
segreje za približno eno štiritisočinko stopinje. Takšno temperaturno razliko lahko zaznamo
v specializiranih laboratorijih, za praktično klinično delo pa je premajhna, zato absorbirano
dozo merimo posredno.

Hitrost doze je spreminjanje absorbirane doze s časom, torej kako hitro absorbirana
doza narašča s časom:

Ḋ =
dD

dt
. (1.3)

1.2 Monitorska enota

V času kobaltnih obsevalnikov je bilo moč hitrost absorbirane doze v tarči izračunati iz
aktivnosti vira, razdalje med virom in tarčo ter debeline tkiva nad tarčo. Aktivnost kobal-
tnega vira je bila tekom posameznega obsevanja praktično konstantna, na dalǰsi rok pa je
upadala skladno z razpolovnim časom za Co-60 (5,27 let).

Linearni pospeševalniki, po drugi strani, ne sevajo kontinuirano, ampak v pulzih.
Tipične vrednosti so 100–400 pulzov na sekundo in širina pulzov 1-10 µs. Linearni po-
speševalnik Varian 2100C/D na primer uporablja pulze širine 5 µs na vsakih 5 ms.

V glavi linearnega pospeševalnika je v fotonskem/elektronskem snopu monitorska ioni-
zacijska celica, ki kontinuirano meri “dozo” in glede na nastavljene parametre za hitrost
doze odpre ali zapre elektronski top.

Monitorska enota (angl. monitor unit, MU) je v zvezi z dozo; običajna kalibracija je,
da 1 MU ustreza dozi 1 cGy v globini 10 cm.
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1.3 Posredno merjenje doze z ionizacijsko celico

Namesto kalorimetričnega merjenja doze se v klinični praksi najpogosteje uporablja po-
sredno merjenje absorbirane doze prek električnega naboja, ki ga prek ionizacije v snovi
ustvari sevanje.

Pri absolutni dozimetriji izmerjeni električni naboj neposredno preračunamo v absor-
birano dozo. V rabi je več protokolov za meritev in pretvorbo. V Evropi se uporablja
predvsem IAEA TRS-398 (IAEA, 2000), ki je nadomestil stareǰsi TRS-277, v ZDA pa
AAPM TG-51, ki je nasledil stareǰsi protokol AAPM TG-21.

Električni naboj merimo v vodnem fantomu v globini 10 cm, pri čemer je razdalja med
izvirom sevanja in gladino vode (source-surface distance, SSD) enaka 90 cm. Obsevalno
polje je kvadratno in veliko 10 × 10 cm2 v ravnini izocentra. Za fotone se uporablja
cilindrična ionizacijska celica tipa Farmer, meri se s klinično relevantno hitrostjo doze
(npr. 300 MU/min).

TRS-398 uporablja za preračun električnega naboja v absorbirano dozo izraz:

Dw,Q(zref) = MQND,w,Q0kQ,Q0 . (1.4)

Pri tem je Dw,Q(zref) absorbirana doza D v vodi (indeks w), v referenčni globini zref , za
sevanje s kakovostjo Q. Kakovost sevanja Q je parameter, ki povzame energijski spekter
ionizirajočega sevanja.

Faktor ND,w,Q0 je kalibracijski faktor za celico, ki ga poda izdelovalec ionizacijske ce-
lice. Izmerjen je v referenčnem laboratoriju v sevalnem snopu vira 60Co (kakovost Q0).
Razliko med kakovostjo sevanja kliničnega vira Q in kakovostjo sevanja referenčnega vira
Q0 upoštevamo s korekcijskim faktorjem kQ,Q0 .

MQ je korigirana vrednost električnega naboja, ki jo izračunamo iz nekorigiranega
odčitka električnega naboja Me:

MQ = MekT,pkeleckpolks. (1.5)

Pri tem je kT,p popravek zaradi spremenjene temperature in tlaka glede na referenčne
pogoje, kelec korekcijski faktor elektrometra, kpol popravek zaradi polaritete in ks rekombi-
nacijski popravek.

Standardni pogoji so T0 = 293, 2 K (20 ◦C), p0 = 1013, 2 hPa in relativna vlažnost
20–80%. Popravek kT,p izračunamo iz splošne plinske enačbe in je enak:

kT,p =
T

T0

p0
p
. (1.6)

Polaritetni popravek upošteva spremembo odčitka, če zamenjamo polariteti elektrod:

kpol =
|M+|+ |M−|

2M
. (1.7)

Pri tem je |M+| odčitek, kadar je srednja elektroda priključena kot anoda, |M−| odčitek,
kadar je srednja elektroda priključena kot katoda, in M odčitek, kadar je srednja elektroda
priključena tako, kot se običajno uporablja.
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Rekombinacijski popravek ks upošteva odvisnost odčitka od električne napetosti med
elektrodama:

ks = a0 + a1

(
M1

M2

)
+ a2

(
M1

M2

)2

. (1.8)

Pri tem sta M1 in M2 odčitka pri običajni in polovični napetosti med elektrodama, a0, a1
in a2 pa koeficienti, ki jih preberemo iz tabele. Namesto z običajno in polovično napetostjo
(npr. 400 V in 200 V) lahko delamo tudi z običajno in četrtinsko napetostjo (400 V in
100 V) in pri tem upoštevamo prave koeficiente za to možnost.

Popravek kelec upošteva različno občutljivost elektrometrov; ker sta v našem primeru
bila ionizacijska celica in elektrometer kalibrirana skupaj, je ta koeficient enak kar 1.
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2 Analiza negotovosti meritve absorbirane doze

Pri tej računski vaji, ki se navezuje na preǰsnjo, bomo ocenili negotovost izračunane ab-
solutne absorbirane doze. Naslonili se bomo na metodologijo Vodila za izražanje merilne
negotovosti (Guide to the Expression of Uncertainty of Measurement – GUM; JCGM,
2008).

2.1 Modeliranje meritve

Merjena količina Y (npr. v našem primeru absorbirana doza) dostikrat ni neposredno
merjena, ampak je določena iz drugih količin Xi

Y = f(X1, X2, . . . XN) . (2.1)

Običajno imamo na razpolago le ocene xi za količine Xi, na osnovi katerih lahko dobimo
oceno y količine Y :

y = f(x1, x2, . . . xN) . (2.2)

Ocenjene vrednosti vhodnih podatkov xi imajo svoje negotovosti. Količine lahko razvr-
stimo v dve skupini:

1. Količine, katerih negotovost lahko neposredno določimo, npr. s ponavljanjem meritve.
To imenujemo negotovost tipa A.

2. Količine, katerih negotovosti ne moremo določiti neposredno, ampak jo pridobimo iz
zunanjih virov (npr. certifikata). Te imenujemo negotovost tipa B.

Standardna negotovost tipa A. Kadar imamo za neko količno na voljo več meritev,
lahko izračunamo povprečje in standardni odklon:

x̄ =
N∑
i=1

xi , σ =

√√√√ 1

n− 1

N∑
i=1

(xi − x̄)2 . (2.3)

Zaupanje v tako izračunano povprečje izraža standardna napaka povprečja:

σn =
σ√
n
. (2.4)

Prave vrednosti merjene količine X sicer ne poznamo, poznamo le njeno oceno x̄, v primeru
normalne porazdelitve pa se X z 68% verjetnosti nahaja na intervalu [x̄ − σn, x̄ + σn].
Razširitev intervala poveča verjetnost: na intervalu [x̄ − 2σn, x̄ + 2σn] bomo vrednost X
našli z 95% verjetnosti, na intervalu [x̄ − 3σn, x̄ + 3σn] pa z več kot 99% verjetnosti.
Standardna negotovost tipa A je kar enaka standardni napaki povprečja:

u(x) =

√√√√ 1

n(n− 1)

N∑
i=1

(xi − x̄)2 . (2.5)
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Včasih se namesto standardne navaja razširjena napaka povprečja, ki ustreza širšemu in-
tervalu. V tem primeru mora biti navedeno tudi, kako širok je interval; k = 2 tako npr.
označuje interval, širok ±2σn. Enakovredna oznaka je stopnja zaupanja, npr. 90%, 95%
ali 99%.

Standardna negotovost tipa B. Pri negotovosti tipa B se moramo zanesti na zunanji
vir in na uporabljeni način poročanja negotovosti. Lahko je podana standardna nego-
tovost, kot v zgornjem primeru, lahko pa je podan interval, znotraj katerega se gotovo
nahaja izmerjena vrednost, npr. x ± a. Če nimamo na voljo drugačnih podatkov, v tem
primeru privzamemo, da je verjetnostna porazdelitev znotraj tega intervala enakomerna,
izven intervala pa je verjetnost enaka nič. Standardna negotovost je v tem primeru enaka

u(x) =
a√
3
. (2.6)

Sestavljena negotovost. Kadar je rezultat odvisen od več kot enega vhodnega podatka,
je tudi skupna negotovost sestavljena iz prispevkov posameznih vhodnih negotovosti. Tu
se omejimo na primer, ko vhodnih vrednosti med seboj niso korelirane. Sestavljena ne-
gotovost je enaka kvadratnemu koremu utežene vsote kvadratov posameznih standardnih
negotovosti:

uc =

√√√√ N∑
i=1

(
∂f

∂xi

)2

u2(xi) . (2.7)

Pri tem je u(xi) standardna negotovost tipa A ali B, členu (∂f)/(∂xi) pa pravimo koeficient
občutljivost.

2.2 Zgled: meritev absobirane doze

Za zgled bomo analizirali meritev absorbirane doze po protokolu IAEA TRS-398:

Dw = (Me −M0)ND,w,Q0kQ,Q0kT,pkskpol .

Izraz poznamo že od prej (en. 1.4, 1.5), le da smo tu eksplicitno zapisali še vrednost meritve
ozadja M0. Podatki, ki so nam na voljo, so:

1. 6 MV žarek, kQ,Q0 = 0.676

2. meritve naboja: Me = {10.02, 10.01, 9.99, 10.04, 10.05, 10.08, 10.18, 9.91, 9.87, 10.01}
nC

3. ozadje: M0 = 0.001± 0.001 nC

4. kalibracijski faktor celice: ND,w,Q0 = 5.772 · 107 Gy/C, u = 2.2%, (k = 2)

5. T = 21± 0.2 ◦C, p = 997± 5 hPa
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6. ks = 1.004, u = 0.16%

7. kpol = 1.001, u = 0.14%

Meritve Me. Najprej se lotimo meritev naboja, M = Me −M0. Sestavljena negotovost
je enaka:

uc(M) =

√(
∂M

∂Me

)2

u2(Me) +

(
∂M

∂M0

)2

u2(M0) =
√
u2(Me) + u2(M0) . (2.8)

Tu je u(Me) negotovost tipa A:

u(Me) =

√√√√ 1

n(n− 1)

N∑
i=1

(Me − M̄e)2 = 0.02709 nC . (2.9)

u(M0) je negotovost tipa B; privzamemo, da je verjetnost enakomerno porazdeljena po
intervalu [0.001− 0.001 nC, 0.001 + 0.001 nC], zato je standardna negotovost enaka:

u(M0) =
0.001 nC√

3
= 0.00058 nC . (2.10)

Sestavljena negotovost je končno enaka

uc(M) =
√
u2(Me) + u2(M0) = 0.02709 nC . (2.11)

Koeficient kT ,p. Podobno se lahko lotimo tudi sestavljene negotovosti koeficienta kT,p:

uc(kT,p) =

√(
∂kT,p
∂T

)2

u2(T ) +

(
∂kT,p
∂p

)2

u2(p)

=

√(
1

T0

p0
p

)2

u2(T ) +

(
− T
T0

p0
p2

)2

u2(p)

= 0.00298 . (2.12)

Upoštevali smo u(T ) = 0.2 ◦C/
√

3 in u(p) = 5 hPa/
√

3.

Koeficient ND,w,Q. Podano imamo negotovost u = 2.2% ob podatku k = 2, kar po-
meni, da gre za razširjeno negotovost, ki z intervalom zajema ±2 širini standardnega od-
klona. Relativno standardno negotovost dobimo, če razširjeno negotovost delimo s faktor-
jem k. Standardna negotovost je tedaj:

u(ND,w,Q0) = 0, 011 · 5.772 · 107 Gy/C = 6.349 · 105 Gy/C . (2.13)

8



Koeficient kQ,Q. Analiza negotovosti koeficienta kQ,Q0 presega obseg teh navodil. Ta-
bela D2.1 v navodilih (Casar, 2015) tabelira vrednost funkcije kQ,Q0(TPR20,10) = [1 −
exp((a− 0.57)/b)]/[1− exp((a−TPR20,10))/b)], pri čemer sta parametra a in b pridobljena
s postopkom najbolǰsega prileganja krivulje merskim ali modeliranim (Monte-Carlo) rezul-
tatom za dani tip ionizacijske celice. Andreo in sod. (2020) ocenjujejo, da je standardna
negotovost u(kQ,Q0) okoli 0.6%, za tiste tipe ionizacijskih celic, pri katerih je bilo na vo-
ljo več merskih podatkov (IBA FC-65G; NE 2561/71; PTW30012, 30013, 31021) pa je
standardna negotovost nižja: u(kQ,Q0) ≈ 0.4%.

Koeficienta ks in kpol. Tudi koeficient ks je rezultat prileganja krivulje meritvam in
analiza negotovosti tega koeficienta presega obseg teh navodil. Namesto tega se bomo oprli
na objavljeno študijo Castro in sod. (2008) in povzeli tam objavljene vrednosti: u(ks) =
0.16%, u(kpol) = 0.14%.

Proračun merskih negotovosti. Ko imamo zbrane in izračunane vse vmesne podatke,
lahko predstavimo komponente, ki prispevajo k sestavljeni negotovosti, v preglednici (Ta-
bela 1). Takšni tabeli pravimo tudi proračun merskih negotovosti. Končni rezultat lahko
zdaj zapǐsemo skupaj s standardno sestavljeno negotovostjo: Dw = 0.5869 ± 0.0074 Gy,
ali Dw = 0.5869(1± 1.2%) Gy.

Tabela 1: Proračun merskih negotovosti pri izračunu absorbirane doze po protokolu IAEA
TRS-398.

Količina Enota Vrednost Koeficient
občutljivosti

Tip
negotovosti

Negotovost Produkt

Xi xi ci A/B u(xi) ci u(xi)

M C 1.002 · 10−8 5.860 · 107 A 2.17 · 10−11 0.001587
ND,w,Q0 Gy/C 5.77 · 107 1,017 · 10−8 B 6.349 · 105 0.006456
kT,p 1 1.0197 0.5756 B 0.0030 0.001715
ks 1 1.0040 0.5846 B 0.0016 0.000939
kpol 1 1.0010 0.5864 B 0.0014 0.000822
kQ,Q0 1 0.9907 0.5925 B 0.0040 0.002348

Dw Gy 0.5869 uc =
√∑

i c
2
iu

2(xi) 0.007363

9



3 Preverjanje odziva ionizacijskih celic s Sr-90

Izhodni tok – fotonski in elektronski – linearnega pospeševalnika redno preverjamo z ioni-
zacijsko celico. Kadar pride do odstopanja, korigiramo izhodni tok pospeševalnika. Kako
vemo, da je treba korigirati pospeševalnik, ne pa celice? Takšno zaupanje v ionizacijsko
celico imamo, ker jo ločeno preverjamo – ne z drugim pospeševalnikom, ampak z radioak-
tivnim izvorom.

3.1 Radioaktivni razpad

Atomska jedra z enakim številom protonov in različnim številom nevtronov imenujemo
izotopi tega kemijskega elementa. Nekateri izotopi so nestabilni in spontano razpadajo, pri
čemer jedra izsevajo delec α, β−, β+ ali sevanje γ.

Število jeder dN , ki razpade v izbranem (kratkem) časovnem intervalu dt, je sorazmerno
skupnemu številu jeder N , dolžini časovnega intervala in sorazmernostni konstanti λ:

dN = −λN dt. (3.1)

Izraz (3.1) integriramo od izbranega začetnega časa t = 0, v katerem je začetno število
jeder enako N0 = N(t = 0): ∫ N

N0

dN

N
= −

∫ t

0

λdt. (3.2)

Izračun integrala (3.2) je eksponentno pojemajoča funkcija:

N = N0e
−λt = N0e

−t/τ = N02
−t/t1/2 . (3.3)

Vsi zgornji zapisi so enakovredni. λ je razpadna konstanta, τ je razpadni čas, t1/2 pa raz-
polovni čas. Pomen slednjega si je najenostavneje predstavljati: to je čas, v katerem pade
število jeder na polovico začetne vrednosti. Razpadni čas τ je čas, v katerem pade število
jeder na 1/e začetne vrednosti, razpadna konstanta λ pa njegova recipročna vrednost.

Zvezo med konstantami najdemo, če enačbo (3.3) delimo z N0 in nato logaritmiramo:

ln

(
N

N0

)
= −λt = − t

τ
= − t

t1/2
ln 2.

Ko enačbo delimo s t, dobimo:

λ =
1

τ
=

ln 2

t1/2
. (3.4)

3.2 Aktivnost

Aktivnost je število jeder radioaktivnega izotopa, ki razpade v danem časovnem intervalu:

A = −dN

dt
=
N0

τ
e−t/τ ≡ A0e

−t/τ . (3.5)

Označili smo A0 = N0/τ . Vidimo, da ne le število jeder, ampak tudi aktivnost vira s časom
eksponentno pojema z enakim razpadnim časom.
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3.3 Preverjanje konstantnosti z izvorom Sr-90

Vir 90Sr, ki ga uporabljamo za preverjanje konstantosti odziva celic, je čisti β− sevalec, ki
z razpolovnim časom 28,79 let razpade v 90Y, ta pa nadalje z razpolovnim časom 64 ur v
stabilni 90Zr:1

90Sr
β−(546 keV)−−−−−−−→

28.79 y

90Y
β−(2,28 MeV)−−−−−−−−→

64.0 h

90Zr.

Razpad v verigi je v splošnem bolj zapleten kot enostavni razpad, ki smo ga obravnavali
prej.

Če označimo tri člene v verigi (90Sr, 90Y in 90Zr) z zaporednimi številkami 1, 2 in 3,
lahko za prvi člen v verigi zapǐsemo:

dN1

dt
= −λ1N1. (3.6)

Število jeder prvega elementa se zmanǰsuje zaradi radioaktivnega razpada, rešitev je ek-
sponentno pojemanje:

N1 = N0
1 e−λ1r A1 = A0

1e
−λ1r. (3.7)

Z N0
1 smo označili začetno število jeder prvega člena v verigi, z A0

1 = λ1N
0
1 pa njegovo

začetno aktivnost.
Za drugi člen v verigi velja:

dN2

dt
= +λ1N1 − λ2N2. (3.8)

Število jeder drugega člena se povečuje z razpadom starševskega izotopa, obenem pa tudi
drugi člen nadalje razpada. Splošna rešitev za N2 je:

N2 =
λ1

λ2 − λ1
N0

1

(
e−λ1t − e−λ2t

)
+N0

2 e−λ2t. (3.9)

Aktivnost drugega člena verige ob pogoju N0
2 = 0 je enaka:

A2 = λ2N2 =
λ2

λ2 − λ1
A0

1

(
e−λ1t − e−λ2t

)
. (3.10)

Izraza (3.9) oziroma (3.10) se v nekaterih primerih poenostavita. En tak primer je, ko je
razpadni čas prvega člena v verigi dosti dalǰsi od razpadnega časa drugega člena: τ1 � τ2,
oziroma λ1 � λ2.

V tem primeru velja λ2/(λ2 − λ1) ≈ 1, e−λ1t ≈ 1, in izraz (3.10) se poenostavi:

A2 ≈ A0
1

(
1− e−λ2t

)
.

V izrazu prepoznamo začetno naraščanje aktivnosti drugega člena v verigi ob predpostavki
N0

2 = 0.

1Podatki pridobljeni 2015-04-02 prek spletnega vmesnika NNDC iz zbirke Evaluated Nuclear Structure
Data File (ENSDF) (Bhat, 1992).
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Drugo limito dobimo za čase, dosti dalǰse od razpadnega časa drugega elementa v verigi,
t � τ2 (ne pa tudi dalǰsi od razpadnega časa prvega člena). V tem primeru je drugi člen
v oklepaju enak nič in nam ostane le prvi člen:

A2 ≈ A0
1e

−λ1t = A1. (3.11)

Aktivnost drugega člena v verigi je enaka aktivnosti prvega člena, saj je omejena z “do-
tokom”, torej razpadom prvega člena. Stanju, ko ostaja količina radioaktivnega izotopa
konstantna, ker ga razpade ravno toliko, kot ga nastane, pravimo sekularno ravnovesje.
Izmerjena aktivnost vira je enaka vsoti aktivnosti prvega in drugega člena.

3.4 Zgledi

Dne 15. 2. 2010 je bila izmerjena aktivnost vira enaka A0 = 33, 3 MBq. Kolikšna je bila
aktivnost tega vira 3. 4. 2015?

Razpolovni čas 90Sr je 28,79 let oziroma 10515,5 dni (vzamemo, da ima leto 365,25
dni). Razpadna konstanta je enaka

λ =
ln 2

t1/2
= 6, 592 · 10−5 dan−1.

Med 15. 2. 2010 in 3. 4. 2015 je preteklo t = 1873 dni. Odtod:

A(t) = A0e
−λt = A0 · 0, 8838 = 29, 4 MBq.

Merilo za aktivnost vira je korigiran naboj, ki ga izmerimo z ionizacijsko celico in
elektrometrom. Če bi z isto ionizacijsko celico in istim elektrometrom v dalǰsih časovnih
razmakih večkrat merili aktivnost vira in dobljeni odčitek naboja korigirali za temperaturo
in zračni tlak, bi ugotovili, da tudi ta s časom pada enako kot aktivnost. Drugi popravki
(zaradi polaritete, rekombinacije itd.) na časovno odvisnost ne vplivajo, ker se s časom ne
spreminjajo.

Za nekorigiran naboj to seveda ne velja. Če čas med zaporednimi meritvami ni predolg,
lahko pri pozneǰsi meritvi izmerimo celo vǐsjo vrednost naboja. Zakaj? Razmislite, kako
sprememba tlaka in temperature vplivata na izmerjeno vrednost.
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4 Individualne zaščite in prepuščeno sevanje

Ob prehodu skozi snov se del sevanja v snovi absorbira, del pa ga snov prepusti. Če na
tanko plast snovi debeline dz vpada sevanje z intenziteto I, se del intenzitete sevanja dI v
snovi absorbira, preostanek (I−dI) pa je prepuščen (slika 4.1). Za curek fotonov velja, da
je del intenzitete sevanja, ki se absorbira, sorazmeren vpadli intenziteti I in debelini snovi
dz:

dI = −µ I dz. (4.1)

Z µ smo označili sorazmernostno konstanto, imenovano linearni oslabitveni (atenuacijski)
koeficient.

Enačbo (4.1) integriramo: ∫ I

I0

dI

I
= −µ

∫ z

0

dz. (4.2)

Kot rezultat dobimo

ln

(
I

I0

)
= −µz,

oziroma, po antilogaritmiranju,
I

I0
= e−µz. (4.3)

Podobno kot v preǰsnjem poglavju lahko tudi tu odvisnost (4.3) namesto z linearnim
atenuacijskim koeficientom zapǐsemo z razpolovno debelino:

I

I0
= 2−z/z1/2 . (4.4)

V angleško govoreči literaturi se za razpolovno debelino uporablja kratica HVL (angl.
half-value layer). Zvezo med µ in z1/2 dobimo, če logaritmiramo zvezo (4.4):

ln

(
I

I0

)
= −µz = − z

z1/2
ln 2,

Slika 4.1: Absorpcija sevanja v snovi.
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d (mm) Me (nC)
0 16,72
6 13,99
7 12,27

10 11,14
12 10,85
15 9,39
20 7,71
25 6,49

Slika 4.2: Podatki o sevanju, prepuščenem skozi zaščite različnih debelin.

in odtod:

µ =
ln 2

z1/2
. (4.5)

Tako linearni oslabitveni koeficient kot razpolovna debelina sta odvisna tako od snovi
(absorberja) kot od kakovosti sevanja.

4.1 Analiza merskih podatkov

Poskus izvedemo tako, da vedno izberemo enako dolg čas obsevanja (npr. 100 MU) in z
elektrometrom merimo naboj, ki ga prepuščeno sevanje ustvari v ionizacijski celici. De-
nimo, da smo za 7 različnih debelin zaščite (in pa brez zaščite) izmerili prepuščeno sevanje.
Zbrane podatke lahko tudi grafično predstavimo (slika 4.2).

Kako iz dobljenih meritev izračunamo linearni oslabitveni koeficient µ? Če absorpcijski
zakon (4.3) logaritmiramo, dobimo enačbo premice:

ln I = ln I0 − µz. (4.6)

Tako preoblikovani podatki so na sliki 4.3.
Iz slike 4.3 je razvidno, da točke ležijo približno na premici. Iz enačbe (4.6) vidimo, da

je strmina te premice ravno iskani linearni oslabitveni koeficient µ.
Kako določimo strmino oziroma smerni koeficient premice, če imamo na voljo merske

točke? Ponekod se najde recept, da izberemo dve izmed merskih točk in iz teh dveh točk
izračunamo smerni koeficient. Račun je resda preprost, k = (y2 − y1)/(x2 − x1), a žal je
metoda zanič. Ni namreč vseeno, kateri dve točki na grafu si izberemo (slika 4.4) – izbira
točk močno vpliva na rezultat.

Strmine premice torej ne določamo iz para merskih točk, ampak skušamo izbrati tako
premico, ki se kar najbolje prilega vsem merskim točkam. Zgled take premice je na sliki 4.5.

Obstaja več metod, kako poiskati premico, ki se kar najbolje prilega merskim točkam.
Ena taka metoda je grafična. Naše oko je precej dobro pri prepoznavanju vzorcev, in z
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d (mm) Me (nC) lnMe

0 16,72 2,82
6 13,99 2,64
7 12,27 2,51

10 11,14 2,41
12 10,85 2,38
15 9,39 2,24
20 7,71 2,04
25 6,49 1,87

Slika 4.3: Linearizirani podatki o sevanju, prepuščenem skozi zaščite različnih debelin.

d (mm) Me (nC) lnMe

0 16,72 2,82
6 13,99 2,64
7 12,27 2,51

10 11,14 2,41
12 10,85 2,38
15 9,39 2,24
20 7,71 2,04
25 6,49 1,87

Slika 4.4: Strmine premice ne določamo iz parov točk.

d (mm) Me (nC) lnMe

0 16,72 2,82
6 13,99 2,64
7 12,27 2,51

10 11,14 2,41
12 10,85 2,38
15 9,39 2,24
20 7,71 2,04
25 6,49 1,87

Slika 4.5: Premica, ki se najbolje prilega vsem merskim točkam.
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d (mm) Me (nC) lnMe

0 16,72 2,82
6 13,99 2,64
7 12,27 2,51

10 11,14 2,41
12 10,85 2,38
15 9,39 2,24
20 7,71 2,04
25 6,49 1,87

Slika 4.6: Grafična metoda iskanja premice, ki se najbolje prilega merskim točkam.

nekaj malega vaje lahko na ta način dobimo kar dobre rezultate. V tem primeru ravnamo
tako:

1. Izračunamo logaritme vrednosti prepuščenega sevanja (odčitek z elektrometra)

2. Na milimetrski papir narǐsemo točke; koordinata x vsake točke je debelina zaščite,
pri kateri smo merili, koordinata y pa logaritem odčitka z elektrometra

3. Na oko potegnemo premico, ki se kar najbolje prilega merskim točkam – pazimo
denimo, da je približno enako točk nad in pod premico

4. Odčitamo smerni koeficient premice k = ∆y/∆x, ki je v tem primeru kar enak
linearnemu oslabitvenemu koeficientu µ

4.2 Metoda najmanǰsih kvadratov

Grafična metoda je imela svoje zlato obdobje v času, ko je bilo lažje najti milimetrski papir
kot računalnik. Danes navadno premico, ki se najbolje prilega merskim točkam, določamo
računsko.

Idelno bi morala zveza (4.6) veljati za vsako od merkih točk:

ln I1 = ln I0 − µz1
ln I2 = ln I0 − µz2

. . .

ln In = ln I0 − µzn

To seveda ne velja, saj vemo, da točke ne ležijo povsem na premici.
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Zahtevo, da točke čim bolje ležijo na premici, lahko zapǐsemo tako:
n∑
j=1

(ln Ij − (ln I0 − µzj))2 = min. (4.7)

Z besedami: vzamemo razliko med izmerjeno vrednostjo prepuščenega sevanja (Ij) in vre-
dnostjo, ki bi sledila iz linearne odvisnosti (ln I0−µzj); ker nas zanima velikost razlik med
izmerjenimi in izračunanimi vrednostmi, razliko kvadriramo, in na koncu seštejemo za vse
merske točke. Iščemo tako premico, pri kateri bo ta vsota kvadriranih vrednosti odstopanj
merskih točk od premice najmanǰsa.

Minimum je eden od ekstremov, in ekstreme poǐsčemo z odvajanjem funkcije.
Oglejmo si primer, ko imamo n parov merskih točk (xj, yj), skoznje pa bi radi potegnili

premico y = ax + b tako, da se bo kar najbolje prilegala merskim točkam. To je enako
iskanju minimuma izraza

F =
n∑
j=1

(yj − (a+ bxj))
2 . (4.8)

Vsoto F odvajamo po a in b:

∂F

∂a
= −2

n∑
j=1

(yj − (a+ bxj)) = 0 (4.9)

∂F

∂b
= −2

n∑
j=1

(yj − (a+ bxj))xj = 0 (4.10)

Dobili smo sistem dveh enačb za dve spremenljivki (a in b), ki ga lahko rešimo:
n∑
j=1

yj = a n+ b
n∑
j=1

xj (4.11)

n∑
j=1

xjyj = a
n∑
j=1

xj + b
n∑
j=1

x2j (4.12)

Pogost zapis rešitve je

b =
sxy
sxx

sxx =
n∑
j=1

(xj − x̄)2 x̄ =
1

n

n∑
j=1

xj

a = ȳ − bx̄ sxy =
n∑
j=1

(xj − x̄) (yj − ȳ) ȳ =
1

n

n∑
j=1

yj

4.3 Koeficient korelacije

Koeficient korelacije r2 je merilo za to, kako dobro se merske točke prilegajo premici.
Koeficient korelacije lahko zapǐsemo v obliki:

r2 =
s2xy

sxxsyy
(4.13)
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Slika 4.7: Štirje nabori točk z enakim koeficientom korelacije (≈ 0.816) iz članka Anscombe
(1973) (ilustracija: Schutz, CC BY-SA 3.0).

Pri tem so vsote sxx, syx in syy enake:

sxx =
n∑
j=1

(xj − x̄)2 syy =
n∑
j=1

(yj − ȳ)2 sxy =
n∑
j=1

(xj − x̄) (yj − ȳ)

Koeficient korelacije ni nadomestilo za premislek o porazdelitvi merskih točk. V znanem
primeru (Anscombe, 1973) vidimo, da imajo lahko zelo različne porazdelitve enako regre-
sijsko premico in isti koeficient korelacije (slika 4.7).

4.4 Zgledi

� Debelina, ki oslabi intenziteto fotonskega snopa za eno četrtino:

I

I0
= e−µd =

(
1− 1

4

)
= 0, 75 d =

− ln(0, 75)

µ

� Debelina, ki prepusti 3% fotonskega snopa:

I

I0
= e−µd = 0, 03 d =

− ln(0, 03)

µ
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5 Recipročni kvadratni zakon

Zamislimo si točkast izvor z dano aktivnostjo A v praznem prostoru, tako da ni absorpcije.
Za poenostavitev predpostavimo, da je vir čisti γ-sevalec (kakršnih v naravi ni), ki ob
vsakem razpadu izseva natanko en foton, in seva izotropno v vse smeri.

Gostota toka fotonov (ali hitrost fotonske fluence) φ je tedaj enaka količniku med ak-
tivnostjo in površino krogle z radijem r in sredǐsčem v izvoru:

φ =
A

4πr2
. (5.1)

Če primerjamo gostoti toka fotonov na dveh različnih razdaljah:

φ2

φ1

=
r21
r22
. (5.2)

Če, denimo, razdaljo podvojimo (r2 = 2r1), pade gostota toka fotonov na eno četrtino
(φ2 = φ1/4). Zakon, ki opisuje pojemanje intenzitete okoli točkastega izvira, ponekod
imenujejo tudi recipročni kvadratni zakon (slika 5.1).

A A
Ar

2r

S

3r

Slika 5.1: Intenziteta pojema s kvadratom oddaljenosti od točkastega izvora (ilustracija:
Borb, CC BY-SA 3.0).

Če recipročni kvadratni zakon (5.1) integriramo po času, dobimo na levi strane enačbe
fotonsko fluenco Φ =

∫
φ dt, na desni pa v imenovalcu število razpadlih jeder oziroma
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d (cm) I (pC/min)
166 60,1
186 47,8
219 34,3
265 23,2
286 20,0
336 14,4
394 10,2

Slika 5.2: Odvisnost električnega toka skozi ionizacijsko celico v odvisnosti od razdalje med
virom in ionizacijsko celico.

število izsevanih fotonov, N =
∫
A dt:

Φ =
N

4πr2
. (5.3)

Elektrometer, ki ga uporabljamo pri tej vaji, lahko deluje na oba načina: lahko bo-
disi prikazuje trenutni tok skozi ionizacijsko celico, ali pa ta tok integrira prek izbranega
časovnega intervala (npr. eno ali dve minuti) in prikaže skupni naboj, ki je v tem času
pretekel prek ionizacijske celice.

5.1 Analiza merskih podatkov

Za zgled vzemimo, da smo pri sedmih različnih oddaljenostih med izvorom in ionizacij-
sko celico izmerili tok skozi ionizacijsko celico. Meritve lahko predstavimo v tabeli ali z
grafikonom (slika 5.2).

Dokazali bi radi, da v tem primeru velja recipročni kvadratni zakon. Z drugimi besedami
povedano bi radi dokazali, da merske točke ležijo (znotraj eksperimentalne napake) na
krivulji 1/r2.

Enako kot pri računanju smernega koeficienta premice iz para točk v 4. poglavju
(slika 4.4) tudi zdaj ni dovolj, če iz množice izberemo dve točki in preverimo, ali velja
zveza (5.2). Morda ravno za izbrani dve točki velja povsem točno. Bolj verjetno pa za
izbrani dve točki ne velja povsem. Kakšno je naše merilo, da bomo presodili, ali vseeno
velja dovolj dobro? In zakaj smo merili pri toliko različnih razdaljah, če bomo nazadnje
vzeli le dve?

Po drugi strani pa smo v preǰsnjem poglavju spoznali koeficient korelacije kot merilo
tega, kako dobro se merske točke prilegajo premici. Metodo lahko uporabimo, če uspemo
merske podatke preoblikovati tako, da bodo ležali na premici namesto na krivulji 1/r2.
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d (cm) 1/d2 m−2 I (pC/min)
166 0,363 60,1
186 0,289 47,8
219 0,208 34,3
265 0,142 23,2
286 0,122 20,0
336 0,0886 14,4
394 0,0644 10,2

Slika 5.3: Odvisnost električnega toka skozi ionizacijsko celico v odvisnosti od kvadrata
recipročne razdalje med virom in ionizacijsko celico.

To lahko storimo, če namesto odvisnosti toka skozi ionizacijsko celico od razdalje med
izvirom in detektorjem, kot na sliki 5.2, rǐsemo odvisnosti toka skozi ionizacijsko celico od
kvadrata recipročne razdalje med izvirom in detektorjem (slika 5.3).

Še vedno ostane interpretacija vrednosti koeficienta korelacije, kjer pa se vendarle lahko
opremo na ustaljeno statistično literaturo. Absolutne vrednosti koeficienta korelacije nad
0.8 se praviloma obravnavajo kot močna koreliranost.
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6 Debelina zaščitnega zidu

V 4. poglavju smo obravnavali absorpcijo sevanja v snovi, v 5 poglavju pa geometrijsko
divergenco žarkov, izvirajočih iz točkastega izvira. Oba pojava vodita do tega, da se
gostota toka fotonov zmanǰsuje z večanjem razdalje od izvora. Zgledi v preǰsnjih dveh
poglavjih so bili izbrani tako, da se je dalo enega od pojavov zanemariti – pri obravnavi
absorpcije je bila debelina sredstva dovolj majhna, da divergenca ni bila pomembna, ob
obravnavi divergence pa smo lahko zanemarili absorpcijo žarkov γ v zraku. V primeru,
ki ga bomo obravnavali zdaj, bo treba obenem upoštevati oba pojava, obenem pa pojav
dodatno zaplete še dejstvo, da imamo opravka z dvema plastema, ki različno absorbirata
visokoenergijske fotone – beton in jeklo.

Že v 4. poglavju smo spoznali dva parametra, ki opisujeta pojemanje sevanja zaradi
abrorpcije: linearni oslabitveni koeficient µ in razpolovno debelino HVL. Vsi spodnji zapisi
za eksponentno pojemanje intenzitete sevanja so enakovredni:

I = I0e
−µz = I0e

−z/ζ , (6.1)

I = I02
−z/z1/2 = I02

−z/HVL, (6.2)

I = I010−z/z1/10 = I010−z/TVL. (6.3)

Poleg že znane kratice HVL smo vpeljali še kratico TVL (angl. tenth-value layer), torej
debelino, v kateri pade intenziteta sevanja na desetino.

Zvezo med različnimi parametri poǐsčemo tako, da v zgornjih enačbah logaritmiramo
količnik I/I0, in dobimo:

µ =
ln 2

HVL
=

ln 10

TVL
.

6.1 Absorpcija v dvoplastnem sredstvu

Za začetek si olaǰsamo delo s tem, da za zdaj zanemarimo geometrijsko divergenco snopa
(slika 6.1). Snop vzporednih žarkov z intenziteto I0 vpada pravokotno na absorber, ki je
sestavljen iz dveh plasti: prva plast ima debelino d1 in je sestavljena iz snovi z linearnim
oslabitvenim koeficientom µ1, druga pa ima debelino d2 in je sestavljena iz snovi z linearnim
oslabitvenim koeficientom µ2. V našem primeru sta snovi beton in jeklo.

Enako kot v 4. poglavju znamo zapisati intenziteto sevanja v globini d1:

I(d1) = I0e
−µ1d1 . (6.4)

Enako lahko zapǐsemo tudi za drugo plast, torej za intenziteto sevanja v globini d, le da je
tu “vstopni” tok tisti, ki je že prǐsel skozi prvo plast:

I(d) = I(d1)e
−µ2d2 . (6.5)

Sevanje, prepuščeno skozi obe plasti, bi radi izrazili z intenziteto vstopnega sevanja I0, zato
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Slika 6.1: Absorpcija v dvoplastnem sredstvu.

izraz (6.4) vstavimo v (6.5), pa imamo:

I(d) = I0e
−µ1d1e−µ2d2

= I0e
−µ1d1−µ2d2

= I0e
−µ1d1−µ2(d−d1) (6.6)

V zadnjem koraku smo debelino enega od sredstev (d2) izrazili s skupno debelino d in
debelino drugega sredstva (d1).

Če poznamo linearna oslabitvena koeficienta µ1 in µ2 in znamo izmeriti vstopni tok I0,
prepuščeni tok I(d) in skupno debelino d, lahko iz enačbe (6.6) izračunamo debelino d1 (in
potem seveda tudi d2):

ln

(
I0
I

)
= (µ1 − µ2)d1 + µ2d.

6.2 Absorpcija divergentnega snopa

Slika 6.2 shematično prikazuje fotonski snop in zaščito, sestavljeno iz betonskega zidu in
kovinske plošče. Absorpcijo fotonskega snopa v zraku zanemarimo; do razdalje R gostota
toka fotonov pada zgolj zaradi divergence:

I(R) =
P0

4πR2
. (6.7)

Vrednosti P0 v izvoru ne poznamo, lahko pa jo izračunamo, če poznamo vrednost gostote
toka fotonov I v izocentru (R0 = 100 cm):

I(R0) =
P0

4πR2
0

. (6.8)
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Slika 6.2: Absorpcija divergentnega snopa v dvoplastnem sredstvu.

Če na poti ne bi bilo ovir, bi lahko tudi na razdali R + d zapisali:

I(R + d) =
P0

4π(R + d)2
=

R2
0

(R + d)2
I(R0). (6.9)

Če upoštevamo še absorpcijo v obeh sredstvih:

I(R + d) =
R2

0

(R + d)2
I(R0) e−µ1d1−µ2d2 . (6.10)

Enako kot zgoraj lahko izrazimo debelino d2 kot razliko d−d1 ter izraz (6.10) preoblikujemo
tako, da lahko iz njega izrazimo d1:

ln

(
I(R + d)

I(R0)
· (R + d)2

R2
0

)
= −(µ1 − µ2)d1 − µ2d. (6.11)

Še nismo pri koncu. Dosedanje izvajanje predpostavlja, da je linearni oslabitveni koe-
ficient µ konstanta. V resnici je µ odvisen tako od snovi kot tudi od energijskega spektra
sevanja, ki se absorbira v snovi. S prvo zahtevo ni težav – snov ostaja nespremenjena –
z drugo pa imamo majhno zadrego. Dobro bi veljala za monokromatsko sevanje, slabše
pa za fotonski snop z zveznim spektrom, ki ga seva linearni pospeševalnik. Gostota toka
fotonov v snopu z globino nasploh pojema, vendar ne povsem enako za vse energije žarkov.
Gostota toka fotonov z nižjo energijo pojema z globino hitreje kot gostota toka fotonov z
vǐsjo energijo. Z večjo globino narašča relativni delež spektra z vǐsjimi energijami, ali, z
drugimi besedami, spekter postaja “trši”. Linearni atenuacijski koeficient µ torej z globino
narašča, razpolovna debelina HVL in debelina TVL pa padata.

24



Odvisnost µ od globine se najbolj pozna pri manǰsih globinah, potem pa čedalje manj.
V preprostem približku lahko za apsorpcijo fotonov z nominalno energijo 15 MV v betonu
vzamemo TVLB(1) = 44 cm za prvo globino TVL in TVLB(e) = 41 cm za vse naslednje
globine TVL (NCRP, 2005, tabela B.2). Zgornji model bi lahko torej dopolnili tako, da
bi obravnavali prvih 44 cm betona kot ločeno plast z drugačnim linearnim atenuacijskim
koeficientom kot preostanek betonske plasti.
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7 Mehanski izocenter

Izocenter je točka v prostoru, okoli katere se vrtijo komponente medicinskega linearnega
pospeševalnika. Roka obsevalnega aparata se vrti okoli vodoravne osi, ki se seka z navpično
osjo vrtenja obsevalne mize. Skozi to presečǐsče – izocenter – poteka tudi os vrtenja koli-
matorja. Nadalje želimo tudi, da se z izocentrom ujema sredǐsče optičnega polja, sistem
sobnih laserjev za nastavitev bolnika, in vsi slikovni sistemi (npr. naprava za elektronsko
portalno slikanje, naprave za kilovoltno slikanje).

Zaradi različnih neželenih pojavov izocenter v praksi ni točkast, ampak malenkostno
razmazan. Tak pojav je denimo poves roke obsevalnega aparata pod svojo težo, zaradi
česar se žarek pomakne malenkostno proti ležaju roke obsevalnega aparata, ko je ta v
zgornji legi, in malenkostno stran od ležaja roke obsevalnega aparata (oziroma proti mizi),
ko je roka obsevalnega aparata v spodnji legi. Tudi primeri, ko os vrtenja kolimatorja
ne prebada presečǐsča osi vrtenja mize in roke obsevalnega aparata, ali ko sta osi vrtenja
mize in roke obsevalnega aparata mimobežni, vodijo k razmazanju izocentra. Kolikšno
razmazanje dopustimo, je odvisno tudi od namena uporabe linearnega pospeševalnika –
najbolj strogi smo pri tistih, ki se uporabljajo za stereotaktično obsevanje.

Povsem mehansko določanje izocentra zahteva montažo dveh kalibriranih nosilcev: pr-
vega pritrdimo na obsevalno mizo, drugega pa na obsevalno glavo (Tsai in sod., 1996).
Nosilca pri gornji poziciji roke obsevalnega aparata uravnamo tako, da se nosilca ravno
dotikata, potem pa opazujemo, ali dotik nosilcev ostaja enak ob vrtenju roke obsevalnega
aparata, obsevalne mize ali kolimatorja.

Povsem mehansko določanje izocentra je sicer morda konceptualno najbolj jasno, je pa
zahtevno tako za izvedbo kot tudi za vrednotenje rezultatov. Namesto tega se pogosteje
uporablja posredno merjenje z uporabo optičnega nastavitvenega podsistema, kar je tudi
metoda, uporabljena pri teh vajah (Casar, 2015). Ob tem je seveda treba zagotoviti, da
se izocenter optičnega podsistema ujema z mehanskim izocentrom (kar pa ni predmet teh
vaj).
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8 Sevalni izocenter

V preǰsnjem poglavju smo se ukvarjali z mehanskim izocentrom in nadomestkom zanj,
optičnim izocentrom. Optični izocenter je pomemben, ker z optičnim izocentrom nasta-
vljamo bolnike. Ko je bolnik nastavljen, pa ni več pomemben optični izocenter, ampak
sevalni: to je namreč točka, v kateri se sekajo centralne osi snopov iz različnih smeri. Tudi
za sevalni izocenter želimo, da je čim manj razmazan in da čim bolje sovpada z mehanskim
izocentrom.

Pri sevalnem izocentru je mogoče celo zmanǰsati nekatere pojave, ki vodijo k razma-
zanju izocentra. Poves roke obsevalnega aparata je pojav, ki se ga je praktično nemogoče
znebiti, in zato vedno vodi k razmazanju mehanskega izocentra v longitudinalni smeri. Po
drugi strani pa je pojav zelo regularen in ponovljiv, zato ga je mogoče zmanǰsati s preci-
znim krmiljenjem elektronskega žarka, ki ga uporabljamo za produkcijo visokoenergijskih
fotonov.

Morda najbolj znan test za preverjanje položaja sevalnega izocentra je Winston-Lutzov
test (Lutz in sod., 1988). V svoji prvotni izvedbi test obsega postavitev jeklene kroglice
v izocenter, nato pa na glavo obsevalnega aparata namestimo fiksni konusni kolimator
okroglega preseka, ki se uporablja za stereotaktično obsevanje in slikanje projekcije kroglice
na radiokromni film. Premer konusnega kolimatorja je izbran tako, da je njegova projekcija
v izocentru malo večja od premera kroglice, tako da je obsevan kolobar na filmu. Posnetek
se ponovi pri različnih kotih zasuka roke obsevalnega aparata, mize in kolimatorja, iz širine
obsevanega kolobarja v različnih smereh pa je mogoče sklepati na odstopanje osi zasuka.
Pregled izvedenk Winston-Lutzevega testa je v članku Rowshanfarzad in sod. (2011).

Alternativni postopek, izvedljiv tudi na obsevalnih aparatih brez stereotaktičnih koli-
matorjev, pa je obsevanje radiokromnega filma z ozko režo (Treurer in sod., 2000). Če film
obsevamo večkrat, pri čemer spreminjamo kot zasuka ene od komponent obsevalnika (roka
obsevalnika, miza, kolimator), dobimo značilen zvezdast vzorec (slika 8.1).

Digitalizirano sliko filma računalnǐsko obdelamo. Tu uporabljamo prosto dostopen
program Pylinac (https://pypi.python.org/pypi/pylinac), na voljo pa je tudi več ko-
mercialnih rešitev. Postopek, ki ga uporabljajo, pa je bolj ali manj enak:

� Določi se približno sredǐsče zvezde: na mestu, kjer se križa več žarkov, je počrnitev
večja kot sicer (slika 8.1 je negativ počrnitve).

� Določi se krožnica okoli približnega izhodǐsča, določenega v preǰsnji točki, in izračuna
profil počrnitve vzdolž tega profila.

� Profil se analizira in na njem se poǐsčejo vrhovi, ki ustrezajo presečǐsču krožnice s
počrnitvijo zaradi žarka. Vrhov mora biti sodo mnogo, ker vsak žarek dvakrat seka
krožnico.

� Poǐsče se, kateri par vrhov pripada istemu žarku, in določi se smerne koeficiente
žarkov.

� Izračuna se radij kroga, včrtan v lik, ki ga oklepajo smerne premice žarkov.
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Slika 8.1: Zvezdast vzorec, ki nastane ob obsevanju filma v koronarni ravnini pri treh
različnih kotih zasuka roke obsevalnika, in analiza posnetka z modulom Starshot programa
Pylinac.

� Radij je odvisen od izbire začetnega izhodǐsča; po gradientni metodi izberemo novo
izhodǐsče in iterativno ponavljamo postopek od 2. koraka dalje za novo izhodǐsče.
Kriterij za minimizacijo je čim manǰsi radij včrtanega kroga.

� Sredǐsče, h kateremu konvergira postopek, je optimizirano sredǐsče zvezde; polmer
včrtanega kroga pri optimiziranem sredǐsču pa je merilo za opletanje izocentra.

Izvedemo tri meritve: prvič pri treh različnih kotih kolimatorja (120◦ vsaksebi), drugič
pri treh različnih kotih zasuka obsevalne mize in tretjič pri treh različnih kotih zasuka roke
obsevalnega aparata.
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